Mercurial > hg4j
view cmdline/org/tmatesoft/hg/console/Incoming.java @ 181:cd3371670f0b
Refactor incoming and outgoing code to be shared with RepositoryComparator. Placeholders for in/out commands. Refactor common remote lookup code
author | Artem Tikhomirov <tikhomirov.artem@gmail.com> |
---|---|
date | Tue, 12 Apr 2011 19:10:38 +0200 |
parents | 62665d8f0686 |
children | f26ffe04ced0 |
line wrap: on
line source
/* * Copyright (c) 2011 TMate Software Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For information on how to redistribute this software under * the terms of a license other than GNU General Public License * contact TMate Software at support@hg4j.com */ package org.tmatesoft.hg.console; import java.io.File; import java.net.URL; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.List; import java.util.ListIterator; import java.util.Map.Entry; import org.tmatesoft.hg.core.HgException; import org.tmatesoft.hg.core.Nodeid; import org.tmatesoft.hg.internal.ConfigFile; import org.tmatesoft.hg.internal.Internals; import org.tmatesoft.hg.internal.RepositoryComparator; import org.tmatesoft.hg.internal.RepositoryComparator.BranchChain; import org.tmatesoft.hg.repo.HgChangelog; import org.tmatesoft.hg.repo.HgLookup; import org.tmatesoft.hg.repo.HgRemoteRepository; import org.tmatesoft.hg.repo.HgRepository; /** * WORK IN PROGRESS, DO NOT USE * hg incoming counterpart * * @author Artem Tikhomirov * @author TMate Software Ltd. */ public class Incoming { public static void main(String[] args) throws Exception { if (Boolean.FALSE.booleanValue()) { new SequenceConstructor().test(); return; } Options cmdLineOpts = Options.parse(args); HgRepository hgRepo = cmdLineOpts.findRepository(); if (hgRepo.isInvalid()) { System.err.printf("Can't find repository in: %s\n", hgRepo.getLocation()); return; } HgRemoteRepository hgRemote = new HgLookup().detectRemote("svnkit", hgRepo); if (hgRemote.isInvalid()) { System.err.printf("Remote repository %s is not valid", hgRemote.getLocation()); return; } // // in fact, all we need from changelog is set of all nodeids. However, since ParentWalker reuses same Nodeids, it's not too expensive // to reuse it here, XXX although later this may need to be refactored final HgChangelog.ParentWalker pw = hgRepo.getChangelog().new ParentWalker(); pw.init(); // RepositoryComparator repoCompare = new RepositoryComparator(pw, hgRemote); repoCompare.compare(null); List<BranchChain> missingBranches0 = repoCompare.calculateMissingBranches(); for (BranchChain bc : missingBranches0) { bc.dump(); List<Nodeid> missing = visitBranches(repoCompare, bc); // Collections.reverse(missing); // useful to test output, from newer to older for (Nodeid n : missing) { if (pw.knownNode(n)) { System.out.println("Erroneous to fetch:" + n); } else { System.out.println(n); } } System.out.println("Branch done"); } } private static List<Nodeid> visitBranches(RepositoryComparator repoCompare, BranchChain bc) throws HgException { if (bc == null) { return Collections.emptyList(); } List<Nodeid> mine = repoCompare.completeBranch(bc.branchRoot, bc.branchHead); if (bc.isTerminal()) { return mine; } List<Nodeid> parentBranch1 = visitBranches(repoCompare, bc.p1); List<Nodeid> parentBranch2 = visitBranches(repoCompare, bc.p2); // merge LinkedList<Nodeid> merged = new LinkedList<Nodeid>(); ListIterator<Nodeid> i1 = parentBranch1.listIterator(), i2 = parentBranch2.listIterator(); while (i1.hasNext() && i2.hasNext()) { Nodeid n1 = i1.next(); Nodeid n2 = i2.next(); if (n1.equals(n2)) { merged.addLast(n1); } else { // first different => add both, and continue adding both tails sequentially merged.add(n2); merged.add(n1); break; } } // copy rest of second parent branch while (i2.hasNext()) { merged.add(i2.next()); } // copy rest of first parent branch while (i1.hasNext()) { merged.add(i1.next()); } // ArrayList<Nodeid> rv = new ArrayList<Nodeid>(mine.size() + merged.size()); rv.addAll(merged); rv.addAll(mine); return rv; } private static class SequenceConstructor { private int[] between(int root, int head) { if (head <= (root+1)) { return new int[0]; } System.out.printf("[%d, %d]\t\t", root, head); int size = 1 + (int) Math.floor(Math.log(head-root - 1) / Math.log(2)); int[] rv = new int[size]; for (int v = 1, i = 0; i < rv.length; i++) { rv[i] = root + v; v = v << 1; } System.out.println(Arrays.toString(rv)); return rv; } public void test() { int root = 0, head = 126; int[] data = between(root, head); // max number of elements to recover is 2**data.length-1, when head is exactly // 2**data.length element of the branch. // In such case, total number of elements in the branch (including head and root, would be 2**data.length+1 int[] finalSequence = new int[1 + (1 << data.length >>> 5)]; // div 32 - total bits to integers, +1 for possible modulus int exactNumberOfElements = -1; // exact number of meaningful bits in finalSequence LinkedHashMap<Integer, int[]> datas = new LinkedHashMap<Integer, int[]>(); datas.put(root, data); int totalQueries = 1; HashSet<Integer> queried = new HashSet<Integer>(); int[] checkSequence = null; while(!datas.isEmpty()) { LinkedList<int[]> toQuery = new LinkedList<int[]>(); do { Iterator<Entry<Integer, int[]>> it = datas.entrySet().iterator(); Entry<Integer, int[]> next = it.next(); int r = next.getKey(); data = next.getValue(); it.remove(); populate(r, head, data, finalSequence); if (checkSequence != null) { boolean match = true; // System.out.println("Try to match:"); for (int i = 0; i < checkSequence.length; i++) { // System.out.println(i); // System.out.println("control:" + toBinaryString(checkSequence[i], ' ')); // System.out.println("present:" + toBinaryString(finalSequence[i], ' ')); if (checkSequence[i] != finalSequence[i]) { match = false; } else { match &= true; } } System.out.println(match ? "Match, on query:" + totalQueries : "Didn't match"); } if (data.length > 1) { /*queries for elements next to head is senseless, hence data.length check above and head-x below*/ for (int x : data) { if (!queried.contains(x) && head - x > 1) { toQuery.add(new int[] {x, head}); } } } } while (!datas.isEmpty()) ; if (!toQuery.isEmpty()) { System.out.println(); totalQueries++; } Collections.sort(toQuery, new Comparator<int[]>() { public int compare(int[] o1, int[] o2) { return o1[0] < o2[0] ? -1 : (o1[0] == o2[0] ? 0 : 1); } }); for (int[] x : toQuery) { if (!queried.contains(x[0])) { queried.add(x[0]); data = between(x[0], x[1]); if (exactNumberOfElements == -1 && data.length == 1) { exactNumberOfElements = x[0] + 1; System.out.printf("On query %d found out exact number of missing elements: %d\n", totalQueries, exactNumberOfElements); // get a bit sequence of exactNumberOfElements, 0111..110 // to 'and' it with finalSequence later int totalInts = (exactNumberOfElements + 2 /*heading and tailing zero bits*/) >>> 5; int trailingBits = (exactNumberOfElements + 2) & 0x1f; if (trailingBits != 0) { totalInts++; } checkSequence = new int[totalInts]; Arrays.fill(checkSequence, 0xffffffff); checkSequence[0] &= 0x7FFFFFFF; if (trailingBits == 0) { checkSequence[totalInts-1] &= 0xFFFFFFFE; } else if (trailingBits == 1) { checkSequence[totalInts-1] = 0; } else { // trailingBits include heading and trailing zero bits int mask = 0x80000000 >> trailingBits-2; // with sign! checkSequence[totalInts - 1] &= mask; } for (int e : checkSequence) { System.out.print(toBinaryString(e, ' ')); } System.out.println(); } datas.put(x[0], data); } } } System.out.println("Total queries:" + totalQueries); for (int x : finalSequence) { System.out.print(toBinaryString(x, ' ')); } } private void populate(int root, int head, int[] data, int[] finalSequence) { for (int i = 1, x = 0; root+i < head; i = i << 1, x++) { int value = data[x]; int value_check = root+i; if (value != value_check) { throw new IllegalStateException(); } int wordIx = (root + i) >>> 5; int bitIx = (root + i) & 0x1f; finalSequence[wordIx] |= 1 << (31-bitIx); } } private static String toBinaryString(int x, char byteSeparator) { StringBuilder sb = new StringBuilder(4*8+4); sb.append(toBinaryString((byte) (x >>> 24))); sb.append(byteSeparator); sb.append(toBinaryString((byte) ((x & 0x00ff0000) >>> 16))); sb.append(byteSeparator); sb.append(toBinaryString((byte) ((x & 0x00ff00) >>> 8))); sb.append(byteSeparator); sb.append(toBinaryString((byte) (x & 0x00ff))); sb.append(byteSeparator); return sb.toString(); } private static String toBinaryString(byte b) { final String nibbles = "0000000100100011010001010110011110001001101010111100110111101111"; assert nibbles.length() == 16*4; int x1 = (b >>> 4) & 0x0f, x2 = b & 0x0f; x1 *= 4; x2 *= 4; // 4 characters per nibble return nibbles.substring(x1, x1+4).concat(nibbles.substring(x2, x2+4)); } } }