Mercurial > hg4j
view src/org/tmatesoft/hg/internal/Patch.java @ 710:cf200271439a
KeywordFilter: 'IllegalStateException: need buffer of at least...' during status op for a small file
author | Artem Tikhomirov <tikhomirov.artem@gmail.com> |
---|---|
date | Mon, 07 Oct 2013 01:56:05 +0200 |
parents | 7c0d2ce340b8 |
children |
line wrap: on
line source
/* * Copyright (c) 2011-2013 TMate Software Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For information on how to redistribute this software under * the terms of a license other than GNU General Public License * contact TMate Software at support@hg4j.com */ package org.tmatesoft.hg.internal; import java.io.IOException; import java.util.ArrayList; import java.util.Formatter; import org.tmatesoft.hg.core.HgIOException; /** * @see http://mercurial.selenic.com/wiki/BundleFormat * in Changelog group description * * range [start..end) in original source gets replaced with data of length (do not keep, use data.length instead) * range [end(i)..start(i+1)) is copied from the source * * @author Artem Tikhomirov * @author TMate Software Ltd. */ public final class Patch { private final IntVector starts, ends; private final ArrayList<byte[]> data; private final boolean shallNormalize; private static byte[] generate(int c) { byte[] rv = new byte[c]; for (int i = 0; i < c; i++) { byte x = (byte) ('a' + i); rv[i] = x; } return rv; } public static void main(String[] args) { Patch p1 = new Patch(), p2 = new Patch(); // simple cases (one element in either patch) // III: (1,10 20) & (5,15,15) p2End from [p1End..p1AppliedEnd] (i.e. within p1 range but index is past p2 end index) // II: (1,10,7) & (3,15,15) insideP2 = true and no more p1 entries // II: (1,1,10) & (3,11,15) // independent: (1,10,10) & (15,25,10); (15, 25, 10) & (1, 10, 10) // I: (15, 25, 10) & (10, 20, 10). result: [10, 20, 10] [20, 25, 5] // IV: (15, 25, 10) & (10, 30, 20) // // cycle with insideP2 // // cycle with insideP1 // // multiple elements in patches (offsets) p1.add(15, 25, generate(10)); p2.add(10, 30, generate(20)); System.out.println("p1: " + p1); System.out.println("p2: " + p2); Patch r = p1.apply(p2); System.out.println("r: " + r); } public Patch() { this(16, false); } public Patch(boolean normalizeOnChange) { this(16, normalizeOnChange); } public Patch(int sizeHint, boolean normalizeOnChange) { shallNormalize = normalizeOnChange; starts = new IntVector(sizeHint, -1); ends = new IntVector(sizeHint, -1); data = new ArrayList<byte[]>(sizeHint); } public String toString() { StringBuilder sb = new StringBuilder(); Formatter f = new Formatter(sb); for (int i = 0; i < count(); i++) { f.format("[%d, %d, %d] ", starts.get(i), ends.get(i), data.get(i).length); } return sb.toString(); } public int count() { return data.size(); } // number of bytes this patch will add (or remove, if negative) from the base revision public int patchSizeDelta() { int rv = 0; int prevEnd = 0; for (int i = 0, x = data.size(); i < x; i++) { final int start = starts.get(i); final int len = data.get(i).length; rv += start - prevEnd; // would copy from original rv += len; // and add new prevEnd = ends.get(i); } rv -= prevEnd; return rv; } public byte[] apply(DataAccess baseRevisionContent, int outcomeLen) throws IOException { if (outcomeLen == -1) { outcomeLen = baseRevisionContent.length() + patchSizeDelta(); } int prevEnd = 0, destIndex = 0; byte[] rv = new byte[outcomeLen]; for (int i = 0, x = data.size(); i < x; i++) { final int start = starts.get(i); baseRevisionContent.seek(prevEnd); // copy source bytes that were not modified (up to start of the record) baseRevisionContent.readBytes(rv, destIndex, start - prevEnd); destIndex += start - prevEnd; // insert new data from the patch, if any byte[] d = data.get(i); System.arraycopy(d, 0, rv, destIndex, d.length); destIndex += d.length; prevEnd = ends.get(i); } baseRevisionContent.seek(prevEnd); // copy everything in the source past last record's end baseRevisionContent.readBytes(rv, destIndex, (baseRevisionContent.length() - prevEnd)); return rv; } public void clear() { starts.clear(); ends.clear(); data.clear(); } /** * Initialize instance from stream. Any previous patch information (i.e. if instance if reused) is cleared first. * Read up to the end of DataAccess and interpret data as patch records. */ public void read(DataAccess da) throws IOException { clear(); while (!da.isEmpty()) { readOne(da); } } /** * Caller is responsible to ensure stream got some data to read */ public void readOne(DataAccess da) throws IOException { int s = da.readInt(); int e = da.readInt(); int len = da.readInt(); byte[] src = new byte[len]; da.readBytes(src, 0, len); starts.add(s); ends.add(e); data.add(src); } /** * @return how many bytes the patch would take if written down using BundleFormat structure (start, end, length, data) */ public int serializedLength() { int totalDataLen = 0; for (byte[] d : data) { totalDataLen += d.length; } int prefix = 3 * 4 * count(); // 3 integer fields per entry * sizeof(int) * number of entries return prefix + totalDataLen; } /*package-local*/ void serialize(DataSerializer out) throws HgIOException { for (int i = 0, x = data.size(); i < x; i++) { final int start = starts.get(i); final int end = ends.get(i); byte[] d = data.get(i); out.writeInt(start, end, d.length); out.write(d, 0, d.length); } } private void add(Patch p, int i) { add(p.starts.get(i), p.ends.get(i), p.data.get(i)); } /*package-local*/ void add(int start, int end, byte[] d) { if (start == end && d.length == 0) { System.currentTimeMillis(); return; } int last; if (shallNormalize && (last = starts.size()) > 0) { last--; if (ends.get(last) == start) { byte[] d1 = data.get(last); byte[] nd; if (d1.length > 0 && d.length > 0) { nd = new byte[d1.length + d.length]; System.arraycopy(d1, 0, nd, 0, d1.length); System.arraycopy(d, 0, nd, d1.length, d.length); } else { nd = d1.length == 0 ? d : d1 ; } ends.set(last, end); data.set(last, nd); return; } // fall-through } starts.add(start); ends.add(end); data.add(d); } // copies [start..end) bytes from the d private static byte[] subarray(byte[] d, int start, int end) { byte[] r = new byte[end-start]; System.arraycopy(d, start, r, 0, r.length); return r; } /** * Modify this patch with subsequent patch */ public /*SHALL BE PUBLIC ONCE TESTING ENDS*/ Patch apply(Patch another) { Patch r = new Patch(count() + another.count() * 2, shallNormalize); int p1TotalAppliedDelta = 0; // value to add to start and end indexes of the older patch to get their values as if // in the patched text, iow, directly comparable with respective indexes from the newer patch. int p1EntryStart = 0, p1EntryEnd = 0, p1EntryLen = 0; byte[] p1Data = null; boolean insideP1entry = false; int p2 = 0, p1 = 0; final int p2Max = another.count(), p1Max = this.count(); L0: for (; p2 < p2Max; p2++) { int p2EntryStart = another.starts.get(p2); int p2EntryEnd = another.ends.get(p2); final int p2EntryRange = p2EntryEnd - p2EntryStart; final byte[] p2Data = another.data.get(p2); boolean insideP2entry = false; // when we iterate p1 elements within single p2, we need to remember where p2 // shall ultimately start in terms of p1 int p2EntrySavedStart = -1; /// L1: while (p1 < p1Max) { if (!insideP1entry) { p1EntryStart = starts.get(p1); p1EntryEnd = ends.get(p1); p1Data = data.get(p1); p1EntryLen = p1Data.length; }// else keep values final int p1EntryDelta = p1EntryLen - (p1EntryEnd - p1EntryStart); // number of actually inserted(+) or deleted(-) chars final int p1EntryAppliedStart = p1TotalAppliedDelta + p1EntryStart; final int p1EntryAppliedEnd = p1EntryAppliedStart + p1EntryLen; // end of j'th patch entry in the text which is source for p2 if (insideP2entry) { if (p2EntryEnd <= p1EntryAppliedStart) { r.add(p2EntrySavedStart, p2EntryEnd - p1TotalAppliedDelta, p2Data); insideP2entry = false; continue L0; } if (p2EntryEnd >= p1EntryAppliedEnd) { // when p2EntryEnd == p1EntryAppliedEnd, I assume p1TotalAppliedDelta can't be used for p2EntryEnd to get it to p1 range, but rather shall be // augmented with current p1 entry and at the next p1 entry (likely to hit p1EntryAppliedStart > p2EntryEnd above) would do the rest insideP1entry = false; p1++; p1TotalAppliedDelta += p1EntryDelta; continue L1; } // p1EntryAppliedStart < p2EntryEnd < p1EntryAppliedEnd // can add up to p1EntryEnd here (not only to p1EntryStart), but decided // to leave p1 intact here, to avoid delta/range recalculation r.add(p2EntrySavedStart, p1EntryStart, p2Data); // consume part of p1 overlapped by current p2 final int p1DataPartShift = p2EntryEnd - p1EntryAppliedStart; // p2EntryEnd < p1EntryAppliedEnd ==> p2EntryEnd < p1EntryAppliedStart + p1EntryLen // ==> p2EntryEnd - p1EntryAppliedStart < p1EntryLen assert p1DataPartShift < p1EntryLen; p1EntryLen -= p1DataPartShift; p1Data = subarray(p1Data, p1DataPartShift, p1Data.length); p1TotalAppliedDelta += p1DataPartShift; insideP1entry = true; insideP2entry = false; continue L0; } if (p1EntryAppliedStart < p2EntryStart) { if (p1EntryAppliedEnd <= p2EntryStart) { // p1EntryAppliedEnd in fact index of the first char *after* patch // completely independent, copy and continue r.add(p1EntryStart, p1EntryEnd, p1Data); insideP1entry = false; p1++; // fall-through to get p1TotalAppliedDelta incremented } else { // SKETCH: II or III - p2 start inside p1 range // remember, p1EntryDelta may be negative // shall break j'th entry into few // fix p1's end/length // p1EntryAppliedStart < p2EntryStart < p1EntryAppliedEnd, or, alternatively // p2EntryStart is from (p1EntryAppliedStart .. p1EntryAppliedStart + p1EntryLen) int p1DataPartEnd = p2EntryStart - p1EntryAppliedStart; assert p1DataPartEnd < p1EntryLen; r.add(p1EntryStart, p1EntryEnd, subarray(p1Data, 0, p1DataPartEnd)); if (p2EntryEnd <= p1EntryAppliedEnd) { // p2 fits completely into p1 r.add(p1EntryEnd, p1EntryEnd, p2Data); // p2 consumed, p1 has p1EntryLen - p1DataPartEnd - p2EntryRange bytes left to *insert* insideP1entry = true; p1EntryStart = p1EntryEnd; p1EntryLen -= p1DataPartEnd; p1EntryLen -= p2EntryRange; // p2EntryEnd <= p1EntryAppliedEnd ==> p2EntryEnd <= p1EntryAppliedStart + p1EntryLen // -p2EntryStart ==> p2EntryRange <= p1EntryAppliedStart-p2EntryStart + p1EntryLen // p1EntryAppliedStart-p2EntryStart = -p1DataPartEnd ==> p2EntryRange <= p1EntryLen - p1DataEndPart // +p1DataEndPart ==> p2EntryRange + p1DataEndPart <= p1EntryLen assert p1EntryLen >= 0; // p1EntryLen==0 with insideP1entry == true is nor really good here (gives empty patch elements x;x;0), // however changing <= to < in p2EntryEnd <= p1EntryAppliedEnd above leads to errors p1Data = subarray(p1Data, p1DataPartEnd+p2EntryRange, p1Data.length); // augment total delta with p1EntryDelta part already consumed (p1EntryLen is pure insertion left for the next step) p1TotalAppliedDelta += (p1EntryDelta - p1EntryLen); continue L0; } else { // p1 is consumed, take next insideP1entry = false; p1++; insideP2entry = true; p2EntrySavedStart = p1EntryEnd; // this is how far we've progressed in p1 // fall-through to get p1TotalAppliedDelta updated with consumed p1 } } } else { // p1EntryAppliedStart >= p2EntryStart if (p2EntryEnd < p1EntryAppliedStart) { // newer patch completely fits between two older patches r.add(p2EntryStart - p1TotalAppliedDelta, p2EntryEnd - p1TotalAppliedDelta, p2Data); // SHALL NOT increment p1TotalAppliedDelta as we didn't use any of p1 continue L0; // next p2 } else { // p2EntryEnd >= p1EntryAppliedStart // SKETCH: I or IV: // p2 start is outside of p1 range. // // p2DataPartEnd: this is how many bytes prior to p1EntryStart is replaced by p2Data int p2DataPartEnd = p1EntryAppliedStart - p2EntryStart; if (p2EntryEnd < p1EntryAppliedEnd) { // SKETCH: I: copy p2, strip p1 to start from p2EntryEnd, next i (p2) insideP1entry = true; // replace whole p1 (extended to the left by (p2 \ p1) front bytes) r.add(p1EntryStart - p2DataPartEnd, p1EntryEnd, p2Data); p1EntryStart = p1EntryEnd; // see how much of p1 is left for insertion int p1DataPartEnd = p2EntryEnd - p1EntryAppliedStart; // #1 // Similar, although incorrect: p1DataPartEnd == p2Data.length - p2DataPartEnd; // #2 // #1(p2EntryStart + p2DataLen) - p1EntryAppliedStart // #2 p2DataLen - (p1EntryAppliedStart - p2EntryStart) // but this works only in assumption that p2EntryEnd-p2EntryStart == p2Data.length // // p1EntryAppliedStart <= p2EntryEnd < p1EntryAppliedStart + p1EntryLen // -p1EntryAppliedStart (to compare against p1DataPartEnd) ==> 0 <= p1DataPartEnd < p1EntryLen assert p1DataPartEnd < p1EntryLen; assert p1DataPartEnd >= 0; p1EntryLen -= p1DataPartEnd; p1Data = subarray(p1Data, p1DataPartEnd, p1Data.length); // p1TotalAppliedDelta XXX p1TotalAppliedDelta += (p1EntryDelta - p1EntryLen); continue L0; // next p2; } else { // p2EntryEnd >= p1EntryAppliedEnd // SKETCH IV: skip (rest of) p1 completely, continue the same unless found p1 with start or end past p2EntryEnd. insideP1entry = false; // p1 consumed p1++; insideP2entry = true; // extend to the left of p1 by p2 \ p1 front bytes p2EntrySavedStart = p1EntryStart - p2DataPartEnd; // fall-through to get p1TotalAppliedDelta incremented } } } p1TotalAppliedDelta += p1EntryDelta; } // while (p1 < p1Max) { // no more p1 entries, shall close p2 (if it's handled, code above jumps directly to L0) // regardless of whether insideP2 is .t int s = p2EntrySavedStart != -1 ? p2EntrySavedStart : p2EntryStart - p1TotalAppliedDelta; // p2EntrySavedStart != -1 when we started p2 entry processing, but not completed // if we handled last p1 entry but didn't start with p2 entry processing, it's -1 and regular p1 delta shall be used r.add(s, p2EntryEnd - p1TotalAppliedDelta, p2Data); } } if (p1 < p1Max && insideP1entry) { r.add(p1EntryStart, p1EntryEnd, p1Data); p1++; } while (p1 < p1Max) { r.add(this, p1); p1++; }; return r; } /** * Combine consecutive regions into one. * XXX NOW only combines two subsequent regions, seems enough for quick test * @return <code>this</code> or new instance of consecutive regions found */ public Patch normalize() { Patch rv = null; for (int i = 1, x = data.size(); i < x; i++) { if (starts.get(i) == ends.get(i-1)) { if (rv == null) { rv = new Patch(); rv.copyOf(this, 0, i-1); // } else if (ends.get(i-1) == rv.ends.get(rv.ends.size()-1)) { // // "JUST IN CASE" code, i++ below prevents us from getting here // // if the last region is the one already merged, // // ignore this occurrence (otherwise data(i-1) would get copied again) // continue; } byte[] d1 = data.get(i-1); byte[] d = data.get(i); byte[] nd; if (d1.length > 0 && d.length > 0) { nd = new byte[d1.length + d.length]; System.arraycopy(d1, 0, nd, 0, d1.length); System.arraycopy(d, 0, nd, d1.length, d.length); } else { nd = d1.length == 0 ? d : d1 ; } rv.add(starts.get(i-1), ends.get(i), nd); i++; // skip i-th element (effectively means we detect only pairs) // without this ++, element(i-1) is added to rv once "else" below is hit on the next step } else { if (rv != null) { rv.add(this, i-1); } } } if (rv == null) { return this; } else { int last = count() - 1; if (starts.get(last) != ends.get(last-1)) { rv.add(this, last); } } return rv; } private void copyOf(Patch another, int fromIndex, int upToIndex) { while(fromIndex < upToIndex) { add(another, fromIndex++); } } public class PatchDataSource implements DataSerializer.DataSource { public void serialize(DataSerializer out) throws HgIOException { Patch.this.serialize(out); } public int serializeLength() { return Patch.this.serializedLength(); } } }