Mercurial > jhg
view src/org/tmatesoft/hg/util/SparseSet.java @ 260:61cb6724ff36
Experimental alternative to HashMap in Pool to reduce memory footprint
author | Artem Tikhomirov <tikhomirov.artem@gmail.com> |
---|---|
date | Wed, 17 Aug 2011 02:35:15 +0200 |
parents | |
children | 6bb5e7ed051a |
line wrap: on
line source
/* * Copyright (c) 2011 TMate Software Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For information on how to redistribute this software under * the terms of a license other than GNU General Public License * contact TMate Software at support@hg4j.com */ package org.tmatesoft.hg.util; import org.tmatesoft.hg.internal.Experimental; /** * WORK IN PROGRESS, DO NOT USE * Memory-friendly alternative to HashMap-backed Pool. Set where object can be obtained (not only queried for presence) * * cpython repo, use of HashMap Pool results in ~6 Mb of Map.Entry and Map.Entry[], * while use of SparseSet result in 2 Mb. * * @author Artem Tikhomirov * @author TMate Software Ltd. */ @Experimental(reason="Requires tuning to accomodate to collection size. Present state (6-6-6) is too much for a lot of uses") public class SparseSet<T> { public static void main(String[] args) { SparseSet<String> ss = new SparseSet<String>(); String one = Integer.toString(156), two = Integer.toString(1024), three = Integer.toString(1123123); ss.put(one); ss.put(two); ss.put(three); System.out.println(one == ss.get(one)); System.out.println(two == ss.get(two)); System.out.println(three == ss.get(three)); System.out.println(null == ss.get("one")); System.out.println(one == ss.get(Integer.toString(156))); System.out.println(two == ss.get(Integer.toString(1024))); System.out.println(three == ss.get(Integer.toString(1123123))); ss.dump(); } private static class IndexBranch { private final LeafBranch[] leafs = new LeafBranch[64]; } private static class LeafBranch { private final Object[] data = new Object[64]; } private final int[] fixups = new int[] {0x1, 0x10, 0xA, 0xD, 0x1F }; // rehash attempts private final IndexBranch[] level2 = new IndexBranch[64]; private int size = 0; public void put(T o) { int hash = o.hashCode(); // // 8 bits per level // int i1 = (hash >>> 24) & 0xFF, i2 = (hash >>> 16) & 0xFF , i3 = (hash >>> 8) & 0xFF, i4 = hash & 0xFF; // // 10, 8, 8 and 6 bits // final int i1 = (hash >>> 22) & 0x3FF, i2 = (hash >>> 14) & 0xFF , i3 = (hash >>> 6) & 0xFF, i4 = hash & 0x3F; // // 8, 6, 6, 6, 6 // 10, 6, 6, 6, 4 // // 6, 5, 5, 5 = 21 bit // hash = hash ^ (hash >>> 24); // incorporate upper byte we don't use into lower to value it // final int i1 = (hash >>> 18) & 0x3F, i2 = (hash >>> 12) & 0x1F , i3 = (hash >>> 7) & 0x1F, i4 = (hash >>> 2) & 0x1F; // 6, 5, 5 // hash = hash ^ (hash >>> 16); // final int i1 = (hash >>> 10) & 0x3F, i2 = (hash >>> 5) & 0x1F , i3 = hash & 0x1F; // // 6, 6, 6 final int i1 = (hash >>> 15) & 0x3F, i2 = (hash >>> 6) & 0x3F , i3 = hash & 0x3F; LeafBranch l3 = leafBranchPut(i1, i2); if (l3.data[i3] == null) { l3.data[i3] = o; size++; return; } int neighbour = (i3+1) & 0x3F; if (l3.data[neighbour] == null) { l3.data[neighbour] = o; size++; return; } int conflictCount = 0; for (int fixup : fixups) { // if (showConflicts) { // System.out.printf("(fixup: 0x%x) ", fixup); // } l3 = leafBranchPut(i1 ^ fixup, i2); conflictCount++; if (l3.data[i3] != null) { // if (showConflicts) { // System.out.printf("i1 failed "); // } l3 = leafBranchPut(i1, i2 ^ fixup); conflictCount++; // if (showConflicts) { // System.out.printf("i2 %s ", (l3.data[i3] == null) ? "ok" : "failed"); // } // } else { // if (showConflicts) { // System.out.printf("i1 ok"); // } } // if (showConflicts) { // System.out.println(); // } if (l3.data[i3] == null) { l3.data[i3] = o; // System.out.printf("Resolved conflict in %d steps (fixup 0x%X)\n", conflictCount, fixup); size++; return; } } throw new IllegalStateException(String.valueOf(o)); } @SuppressWarnings("unchecked") public T get(T o) { int hash = o.hashCode(); //hash = hash ^ (hash >>> 16); final int i1 = (hash >>> 15) & 0x3F, i2 = (hash >>> 6) & 0x3F , i3 = hash & 0x3F; // LeafBranch l3 = leafBranchGet(i1, i2); if (l3 == null || l3.data[i3] == null) { return null; } if (o.equals(l3.data[i3])) { return (T) l3.data[i3]; } // int neighbour = (i3+1) & 0x3F; if (o.equals(l3.data[neighbour])) { return (T) l3.data[neighbour]; } // // resolve conflict for (int fixup : fixups) { Object data = leafValueGet(i1 ^ fixup, i2, i3); if (data == null) { return null; } if (o.equals(data)) { return (T)data; } data = leafValueGet(i1, i2 ^ fixup, i3); if (data == null) { return null; } if (o.equals(data)) { return (T)data; } } dump(); throw new IllegalStateException(String.format("[%d,%d,%d] hash: 0x%X, hash2: 0x%X, %s", i1, i2, i3, o.hashCode(), hash, o)); } public int size() { return size; } private LeafBranch leafBranchPut(int i1, int i2) { IndexBranch l2 = level2[i1]; if (l2 == null) { level2[i1] = l2 = new IndexBranch(); } LeafBranch l3 = l2.leafs[i2]; if (l3 == null) { l2.leafs[i2] = l3 = new LeafBranch(); } return l3; } private LeafBranch leafBranchGet(int i1, int i2) { IndexBranch l2 = level2[i1]; if (l2 == null) { return null; } return l2.leafs[i2]; } private Object leafValueGet(int i1, int i2, int i3) { IndexBranch l2 = level2[i1]; if (l2 == null) { return null; } LeafBranch l3 = l2.leafs[i2]; if (l3 == null) { return null; } return l3.data[i3]; } public void dump() { int count = 0; for (int i = 0; i < level2.length; i++) { IndexBranch l2 = level2[i]; if (l2 == null) { continue; } for (int j = 0; j < l2.leafs.length; j++) { LeafBranch l3 = l2.leafs[j]; if (l3 == null) { continue; } for (int k = 0; k < l3.data.length; k++) { Object d = l3.data[k]; if (d != null) { System.out.printf("[%3d,%3d,%3d] %s\n", i,j,k,d); count++; } } } } System.out.printf("Total: %d elements", count); } }