Mercurial > jhg
view src/org/tmatesoft/hg/internal/ArrayHelper.java @ 682:f568330dd9c0
Compile with Java5, ensure generics are fine for other compilers, too
author | Artem Tikhomirov <tikhomirov.artem@gmail.com> |
---|---|
date | Mon, 22 Jul 2013 22:47:06 +0200 |
parents | d10399f80f4e |
children |
line wrap: on
line source
/* * Copyright (c) 2011-2013 TMate Software Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For information on how to redistribute this software under * the terms of a license other than GNU General Public License * contact TMate Software at support@hg4j.com */ package org.tmatesoft.hg.internal; import java.util.Arrays; /** * Internal alternative to Arrays.sort to build reversed index along with sorting * and to perform lookup (binary search) without sorted array, using reversed index. * * @author Artem Tikhomirov * @author TMate Software Ltd. */ public final class ArrayHelper<T extends Comparable<T>> { private int[] reverse; // aka sorted2natural private final T[] data; private T[] sorted; public ArrayHelper(T[] _data) { assert _data != null; data = _data; } /** * Sort data this helper wraps, possibly using supplied array (optional) * to keep sorted elements * @param sortDest array to keep sorted values at, or <code>null</code> * @param sortDestIsEmpty <code>false</code> when sortDest already contains copy of data to be sorted * @param keepSorted <code>true</code> to save sorted array for future use (e.g. in */ public void sort(T[] sortDest, boolean sortDestIsEmpty, boolean keepSorted) { if (sortDest != null) { assert sortDest.length >= data.length; if (sortDestIsEmpty) { System.arraycopy(data, 0, sortDest, 0, data.length); } sorted = sortDest; } else { sorted = data.clone(); } reverse = new int[data.length]; for (int i = 0; i < reverse.length; i++) { // initial reverse indexes, so that elements that do // not move during sort got correct indexes reverse[i] = i; } sort1(0, data.length); if (!keepSorted) { sorted = null; } } /** * @return all reverse indexes */ public int[] getReverseIndexes() { return reverse; } public int getReverseIndex(int sortedIndex) { return reverse[sortedIndex]; } public T get(int index) { return data[index]; } public T[] getData() { return data; } /** * Look up sorted index of the value, using sort information * @return same value as {@link Arrays#binarySearch(Object[], Object)} does */ public int binarySearchSorted(T value) { if (sorted != null) { int x = Arrays.binarySearch(sorted, value); // fulfill the Arrays#binarySearch contract in case sorted array is greater than data return x >= data.length ? -(data.length - 1) : x; } return binarySearchWithReverse(0, data.length, value); } /** * Look up index of the value in the original array. * @return index in original data, or <code>defaultValue</code> if value not found */ public int binarySearch(T value, int defaultValue) { int x = binarySearchSorted(value); if (x < 0) { return defaultValue; } return reverse[x]; } /** * Slightly modified version of Arrays.sort1(int[], int, int) quicksort alg (just to deal with Object[]) */ private void sort1(int off, int len) { Comparable<Object>[] x = comparableSorted(); // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1].compareTo(x[j]) > 0; j--) swap(j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(l, l+s, l+2*s); m = med3(m-s, m, m+s); n = med3(n-2*s, n-s, n); } m = med3(l, m, n); // Mid-size, med of 3 } Comparable<Object> v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b].compareTo(v) <= 0) { if (x[b] == v) swap(a++, b); b++; } while (c >= b && x[c].compareTo(v) >= 0) { if (x[c] == v) swap(c, d--); c--; } if (b > c) break; swap(b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(off, s); if ((s = d-c) > 1) sort1(n-s, s); } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private void vecswap(int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) { swap(a, b); } } /** * Returns the index of the median of the three indexed integers. */ private int med3(int a, int b, int c) { Comparable<Object>[] x = comparableSorted(); return (x[a].compareTo(x[b]) < 0 ? (x[b].compareTo(x[c]) < 0 ? b : x[a].compareTo(x[c]) < 0 ? c : a) : (x[b].compareTo(x[c]) > 0 ? b : x[a].compareTo(x[c]) > 0 ? c : a)); } private Comparable<Object>[] comparableSorted() { // Comparable<Object>[] x = (Comparable<Object>[]) sorted // eclipse compiler is ok with the line above, while javac doesn't understand it: // inconvertible types found : T[] required: java.lang.Comparable<java.lang.Object>[] // so need to add another step Comparable<?>[] oo = sorted; @SuppressWarnings("unchecked") Comparable<Object>[] x = (Comparable<Object>[]) oo; return x; } /** * Swaps x[a] with x[b]. */ private void swap(int a, int b) { Object[] x = sorted; Object t = x[a]; x[a] = x[b]; x[b] = t; int z1 = reverse[a]; int z2 = reverse[b]; reverse[b] = z1; reverse[a] = z2; } // copied from Arrays.binarySearch0, update to be instance method and to use reverse indexes private int binarySearchWithReverse(int fromIndex, int toIndex, T key) { int low = fromIndex; int high = toIndex - 1; while (low <= high) { int mid = (low + high) >>> 1; // data[reverse[x]] gives sorted value at index x T midVal = data[reverse[mid]]; int cmp = midVal.compareTo(key); if (cmp < 0) low = mid + 1; else if (cmp > 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } }